Refine Your Search

Topic

Author

Search Results

Technical Paper

Alternative Particle Number Filtration Performance Test Method

2017-03-28
2017-01-0983
Particle Number (PN) regulation was firstly introduced for European light-duty diesel vehicles back in 2011[1]. Since then, PN regulation has been and is being expanded to heavy-duty diesel vehicles and non-road diesel machineries. PN regulation will also be expanded to China and India around 2020 or later. Diesel Particulate Filter (DPF) is significant factor for the above-mentioned PN regulation. This filter technology is to be continuously evolved for the near future tighter PN regulation. Generally, PN filtration performance test for filter technology development is carried out with chassis dynamometer, engine dynamometer or simulator [2]. This paper describes a simplified and relatively quicker alternative PN filtration performance test method for accelerating filter technology development compared to the current test method.
Technical Paper

New Particulate Filter Concept to Reduce Particle Number Emissions

2011-04-12
2011-01-0814
Gasoline Direct Injection (GDI) engines achieve better fuel economy but have the drawback of increased Particulate Matter (PM) emissions. As known from diesel engine applications particulate filters are an effective PM reduction device which is expected to be effective for reduction of particulates emitted by GDI engines as well. For this investigation new filter concepts especially designed for GDI applications are proposed. Filtration efficiency, pressure drop and regeneration performance were verified by cold flow bench and engine and chassis dynamometer testing. The experimental data were used to discuss the validity of these new filter design concepts.
Technical Paper

Development of Exhaust Heat Recovery System Using Highly Heat-Conductive SiC Honeycomb

2018-04-03
2018-01-0048
Reducing the fuel consumption of powertrains in internal combustion engines is still a major objective from an environmental viewpoint. Internal combustion engines waste a huge part of the fuel energy as heat in the exhaust line. Currently, exhaust heat recovery (EHR) systems are attracting attention as an effective means of reducing fuel consumption by collecting heat from waste exhaust gas and using it for rapid warming up of the engine and cabin heating [1, 2, 3, 4]. The benefits of the EHR system are affected by a trade-off between the efficacy of the recovered useful thermal energy and the adverse effect of the additional weight (heat mass) of the system [5]. Conventional EHR systems have a complex heat exchanger structure and a structure in which a bypass pipe and heat exchanger are connected in parallel, giving them a large size and heavy weight. We have developed a new-concept silicon carbide (SiC) heat exchanger with a dense SiC honeycomb.
Technical Paper

Influence of Material Properties and Pore Design Parameters on Non-Catalyzed Diesel Particulate Filter Performance with Ash Accumulation

2012-09-10
2012-01-1728
Diesel particulate filters (DPF) are a common component in emission-control systems of modern clean diesel vehicles. Several DPF materials have been used in various applications. Silicone Carbide (SiC) is common for passenger vehicles because of its thermal robustness derived from its high specific gravity and heat conductivity. However, a segmented structure is required to relieve thermal stress due to SiC's higher coefficient of thermal expansion (CTE). Cordierite (Cd) is a popular material for heavy-duty vehicles. Cordierite which has less mass per given volume, exhibits superior light-off performance, and is also adequate for use in larger monolith structures, due to its lower CTE. SiC and cordierite are recognized as the most prevalent DPF materials since the 2000's. The DPF traps not only combustible particles (soot) but also incombustible ash. Ash accumulates in the DPF and remains in the filter until being physically removed.
Technical Paper

High Porosity DPF Design for Integrated SCR Functions

2012-04-16
2012-01-0843
Diesel engines are more fuel efficient due to their high thermal efficiency, compared to gasoline engines and therefore, have a higher potential to reduce CO2 emissions. Since diesel engines emit higher amounts of Particulate Matter (PM), DPF systems have been introduced. Today, DPF systems have become a standard technology. Nevertheless, with more stringent NOx emission limits and CO2 targets, additional NOx emission control is needed. For high NOx conversion efficiency, SCR catalysts technology shows high potential. Due to higher temperature at the close coupled position and space restrictions, an integrated SCR concept on the DPFs is preferred. A high SCR catalyst loading will be required to have high conversion efficiency over a wide range of engine operations which causes high pressure for conventional DPF materials.
Technical Paper

Newly Developed Cordierite Honeycomb Substrate for SCR Coating Realizing System Compactness and Low Backpressure

2012-04-16
2012-01-1079
Ammonia Selective Catalytic Reduction (SCR) and Lean NOx Trap (LNT) systems are key technologies to reduce NOx emission for diesel on-highway vehicles to meet worldwide tighter emission regulations. In addition DeNOx catalysts have already been applied to several commercial off-road applications. Adding the DeNOx catalyst to existing Diesel Oxidation Catalyst (DOC) and Diesel Particulate Filter (DPF) emission control system requires additional space and will result in an increase of emission system back pressure. Therefore it is necessary to address optimizing the DeNOx catalyst in regards to back pressure and downsizing. Recently, extruded zeolite for DeNOx application has been considered. This technology improves NOx conversion at low temperature due to the high catalyst amount. However, this technology has concerned about strength and robustness, because the honeycomb body is composed of catalyst.
Technical Paper

Development of Improved SCRonDPF Design for Future Tighter Regulations and Reduced System Packaging

2018-04-03
2018-01-0344
With the push towards more stringent on-road US heavy duty diesel regulations (i.e. HD GHG Phase 2 and the proposed ARB 20 mg/bhp-hr NOx), emission system packaging has grown critical while improving fuel economy and NOx emissions. The ARB regulations are expected to be implemented post 2023 while regulation for EU off-road segment will begin from 2019. The regulation, called Stage V, will introduce particle number (PN) regulation requiring EU OEMs to introduce a diesel particulate filter (DPF) while customer demands will require the OEMs to maintain current emission system packaging. A viable market solution to meet these requirements, especially for EU Stage V being implemented first, is a DPF coated with a selective catalyst reduction (SCR) washcoat (i.e. SCRonDPF).
Technical Paper

A Structurally Durable EHC for the Exhaust Manifold

1994-03-01
940466
It is well known that an EHC (Electrically Heated Catalyst) is very effective in reducing cold start HC emissions. However, the large electric power consumption of the EHC is a major technical issue. When installed in the exhaust manifold, the EHC can take advantage of exhaust heat to warm up faster, resulting in a reduced electric power demand. Therefore, a structurally durable EHC which can withstand the severe manifold conditions is desirable. Through the use of a extruded monolithic metal substrate, with a flexible hexagonal cell structure and a special canning method, we have succeeded in developing a structurally durable EHC. This new EHC installed in the exhaust manifold with a light-off catalyst directly behind it demonstrated a drastic reduction in FTP (Federal Test Procedure) Total HC emissions.
Technical Paper

Study of Ceramic Catalyst Optimization for Emission Purification Efficiency

1994-03-01
940784
In this study, to satisfy increasingly strict emission regulations, the conversion efficiency of a 0.11 mm (4 mil) thin-wall catalyst is discussed. The effects of catalyst bulk density on reducing heat mass to improve catalyst emission conversion in the early cold transient mode (Bag 1 in the FTP-75 mode) is quantitatively discussed. To analyze the effects of low heat mass, catalyst's bed temperatures were measured. Effects of the geometric surface area (GSA) and volume of the catalyst were also analyzed. An early feedback control system with an HEGO oxygen sensor and a secondary air injection control system with an original oxygen sensor were compared with an original control system on THC, CO, and NOx emission amounts.
Technical Paper

Development of Wall-Flow Type Diesel Particulate Filter System with Efficient Reverse Pulse Air Regeneration

1995-02-01
950735
A wall-flow type diesel particulate filter system with reverse pulse air developed for vehicles should have the best regeneration performance possible with the least reverse pulse air as possible. We improved the reverse pulse air arrangement to decrease the air consumption and raise regeneration performance. Then, we developed diesel particulate filter (DPF) materials for the pore structure suitable for regeneration. Test equipment was designed to consume less air than a previous prototype system presented in our SAE paper [1]. The experiments used a soot generator simulating a diesel engine and a diesel engine. We confirmed that a wall-flow type DPF could possibly be applied to a regeneration system with the low air consumption for mounting on vehicles.
Technical Paper

Exhaust Gas Temperature Sensor for OBD-II Catalyst Monitoring

1996-02-01
960333
This paper describes a newly-developed, high-performance RTD,(Resistive Temperature detector), which meets OBD-II monitoring requirements. The OBD-II catalyst monitoring requirements are high temperature durability, high accuracy, and narrow piece-to-piece variation. Catalyst monitoring methods have been reviewed and studied by checking the catalyst exotherm(1)(2). The preliminary test results of catalyst monitoring are also described herein.
Technical Paper

Thick Film ZrO2 NOx Sensor

1996-02-01
960334
This paper describes the design concept and evaluation test results of a multi-layered, thick film zirconia NOx sensor which can be used for lean-burn engine management. The oxygen concentration in the measuring gas is lowered to a predetermined level with an oxygen pumping cell, in the first stage. In the second stage, another pumping cell further lowers the oxygen concentration which results in simultaneous NOx decomposition. The second stage pumping current is proportional to the NOx concentration in the measuring gas.
Technical Paper

Performance of Thick Film NOx Sensor on Diesel and Gasoline Engines

1997-02-24
970858
This paper describes a thick film ZrO2 NOx sensor feasible for diesel and gasoline engine applications, and introduces modification items from the previous concept design.(1) The modification items comprise simplifying the sensing element design to reduce output terminals for package design and applying temperature control to the sensing element in order to minimize sensor performance dependency on gas temperature. The NOx sensor indicates a stable linear signal in proportion to NOx concentration in a wide range of temperature, A/F and NOx concentration as a practical condition on both gasoline and diesel engines. The NOx sensor shows a good response in hundred msec. and a sharp signal following NOx generation in a transient state as well. Besides, another type of a NOx sensor is proposed for low NOx measurement in a practical use, by an electromotive force(EMF) voltage instead of a pumping current.
Technical Paper

Advanced Ceramic Substrate: Catalytic Performance Improvement by High Geometric Surface Area and Low Heat Capacity

1997-02-24
971029
Catalytic performance can be improved by increasing geometric surface area (GSA) and reducing bulk density (BD), namely heat capacity, using high cell-density / thinwall advanced ceramic substrates. The advanced substrates, such as 3 mil/600 cpsi and 2 mil/900 cpsi have improved the catalytic performance over the conventional substrates, and are expected to help in complying with future emission regulations, as well as catalyst downsizing. This paper describes the effects of GSA and BD using Pd-based catalysts. The reduction of hydrocarbons emissions was demonstrated significantly at close-coupled location, and dual bed design was proven effective. The effectiveness at under-floor location was not as significant as the close-coupled location.
Technical Paper

Design Development of High Temperature Manifold Converter Using Thin Wall Ceramic Substrate

1997-02-24
971030
This paper proposes a high temperature manifold converter with a thin wall ceramic substrate, such as; 4mil/400cpsi and 4mil/600cpsi. Double-wall cone insulation design was proposed for close-coupled converters to protect the conventional intumescent mat from high temperature. However, the double wall cone insulation is not applicable when the converter is directly mounted to the exhaust manifold without an inlet cone. The prototype manifold converter was tested under hot vibration test with a non-intumescent ceramic fiber mat and retainer rings as a supplemental support. The converter demonstrated durability for 10 hours under 80G acceleration and 100 hours under 60G acceleration with 1,050 °C catalyst bed temperature. The skin temperature of the heat shield was kept below 400 °C.
Technical Paper

In-line Hydrocarbon (HC) Adsorber System for Cold Start Emissions

1997-02-24
970266
In order to meet the strict automobile emission regulations in the U.S.A. and Europe, new aftertreatment technologies such as the EHC and HC Adsorber have been developed to reduce the cold start emissions. The EHC is obviously effective in reducing emissions, but has the demerits of a large electric power demand and a complicated power control system to support it (13). A by-pass type HC adsorber system has the concerns of unreliable by-pass valves and complicated plumbing (10). A major technical challenge of the in-line type HC adsorber was the difference between the HC desorption temperature and the light-off temperature of the burn-off catalyst. This paper describes the evaluation results of a completely passive “In-line HC Adsorber System” which can reduce the cold start emissions without the application of any type of mechanical or pneumatic control valve in the exhaust system.
Technical Paper

Next Generation Diesel Particulate Filter for Future Tighter HDV/NRMM Emission Regulations

2022-03-29
2022-01-0545
Heavy Duty Vehicle (HDV) Diesel emission regulations are set to be tightened in the future. The introduction of PN PEMS testing for Euro VI-e, and the expected tightening of PM/NOx targets set to be introduced by CARB in the US beyond 2024 are expected to create challenging tailpipe PN conditions for OEMs. Additionally, warranty and the useful life period will be extended from current levels. Improved fuel efficiency (reduction of CO2) also remains an important performance criteria. Furthermore, future non-road diesel emission regulations may follow tighten HDV diesel emission regulations contents, and non-road cycles evaluation needs to be considered as well for future. In response to the above tightened regulation, for Diesel Particulate Filter (DPF) technologies will require higher PN filtration performance, lower pressure drop, higher ash capacity and better pressure drop hysteresis for improved soot detectability.
Technical Paper

PSZ Ceramics for Adiabatic Engine Components

1982-02-01
820429
Partially stabilized zirconia is an insulating ceramic which offers high strength, high thermal expansion, and wear resistance. Low thermal conductivity provides the required insulation, high strength improves reliability, and high thermal expansion provides a simple means of attachment for ceramic engine components. Pistons, cylinder liners, and cylinder heads have been insulated with PSZ and engine tested in an adiabatic diesel engine.
Technical Paper

Heated Zirconia Exhaust Gas Oxygen Sensor Having a Sheet-Shaped Sensing Element

1985-02-01
850382
This paper describes the design and property of an electrically heated zirconia exhaust gas oxygen sensor having small-sized and sheet-shaped sensing element. Sensing element and sensor have been miniaturized by monolithic formation of sensing element and heater by means of thick-film techniques. The difference in response property according to the angle of the electrode to exhaust gas flow because of the sheet-shaped configuration of sensing element was minimized by proper design of protective cover. Similarity in λ control property and limit cycle frequency was demonstrated with heated zirconia oxygen sensor having test tube-shaped sensing element by engine dynamometer durability test over 120,000 equivalent miles.
Technical Paper

Multi-Layered Zirconia Oxygen Sensor for Lean Burn Engine Application

1985-02-01
850378
This paper describes the design and operation of multi-layered zirconia oxygen sensor for variable air-fuel ratio controlled engine. A compact and rigid sensor chip consisting of two electrochemical cells; pumping cell and sensing cell, and heater has been developed utilizing laminating and co-firing technology. Air-fuel ratio 10 to 25 can be covered by changing the polarity of pumping current. Effect of exhaust gas temperature on air-fuel ratio output signal is small enough to eliminate temperature compensation. No significant deterioration is observed after 50,000 equivalent miles of engine dynamometer testing.
X